

INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA

E-626-A Data Communication and Industrial Networks (DC-IN)

Lecture #7 Routing

Instructor: Dr. Ahmad El-Banna)anna

Ahmad

 \bigcirc

ROUTING TECHNIQUES

© Ahmad Spring 2015 DC-IN, Lec#7

)anna

LO.

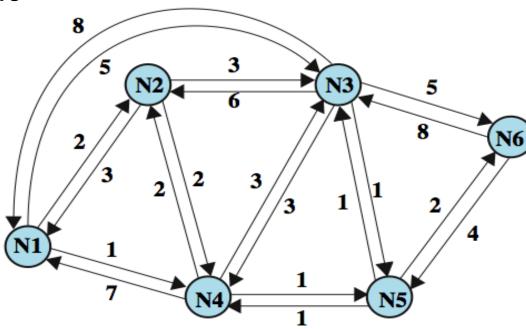
Spring 201

C-IN. Lec#7

Routing Requirements

- Routing can be defined as the process of moving data packets from source to destination.
- It is usually performed by a **device** called a **router**.
- Routing function must have the following:
 - correctness- arrives the right destination
 - simplicity- overhead complexity and delay
 - robustness overcome local failures / overloads
 - Stability do not overload other areas to overcome failure
 - fairness all transfers are important
 - Optimality short paths
 - efficiency routing functions require overhead

, Spring 201


C-IN, Lec#7

Performance Criteria

- used for selection of route
- simplest is to choose "minimum hop"
 - passes through least number of nodes
- can be generalized as "least cost" routing
 - cost associated with each link in network
- because "least cost" is more flexible it is more common than "minimum hop"

Packet-Switched Routing Example

• Consider N1 to N6

- Shortest path 1-3-6 (cost 5 + 5 = 10)
- Least cost 1-4-5-6 (cost 1 + 1 + 2 = 4)

6

Elements of Routing Techniques

Performance Criteria

Number of hops Cost Delay Throughput

Decision Time

Packet (datagram) Session (virtual circuit)

Decision Place

Each node (distributed) Central node (centralized) Originating node (source)

Network Information Source None Local Adjacent node Nodes along route All nodes

Network Information Update Timing

Continuous Periodic Major load change Topology change

, Spring 201

C-IN, Lec#7

8

Routing Decision – Time & Place

- Decision Time
 - Datagram packet made for each packet
 - Virtual circuit made when circuit established
 - Fixed or dynamically changing due to conditions
- Decision Place
 - Centralized made by designated node
 - Distributed made by each node
 - More complex, but more robust
 - Source made by source station

Network Information Source

- routing decisions usually based on
 - knowledge of network topology
 - traffic load
 - link cost
- distributed routing made by each node
 - local knowledge
 - information from adjacent nodes
 - information from all nodes on a potential route
- central routing
 - collect information from all nodes

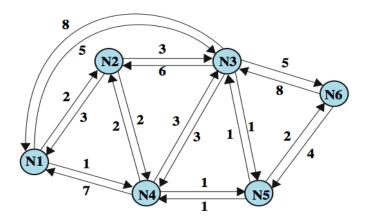
Spring 201

JC-IN, Lec#7

9

Routing Information Update Timing

- Depends on routing strategy
- Fixed routing
 - Information never updated
- Adaptive routing
 - Regular updates to be able to adapt to changing conditions
 - Updates themselves consume network resources


, Spring 201

JC-IN, Lec#7

Fixed Routing

- use a single permanent route for each pair of source-todestination nodes
- determined using a least cost algorithm
- route is fixed
 - until a change in network topology
 - based on expected traffic or capacity
- advantage is simplicity
- disadvantage is lack of flexibility
 - does not react to network failure or congestion
 - can store alternative routes at a node

CENTRAL ROUTING DIRECTORY

From Node

	1	2	3	4	5	6
1	_	1	5	2	4	5
2	2		5	2	4	5
3	4	3	_	5	3	5
4	4	4	5	_	4	5
5	4	4	5	5	-	5
6	4	4	5	5	6	_

Node 1 Directory

To Node

Destination Next Node 2 2 3 4 4 4 5 4 6 4

Next Node

2

2

5

5

5

Destination

2

3

5

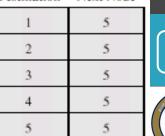
б.

Node 2 Directory

Destination	Next Node
1	1
3	3
4	4
5	4
6	4

Node 3 Directory

Destination	Next Node
1	5
2	5
4	5
5	5
6	5


Node 5 Directory

Destination Next Node

1	4
2	4
3	3
4	4
6	6

Node 6 D

Destination

Fixed Routing **Tables**

Find route 1-6

Node 4 Directory

Directory		
	Next Node	
	5	

Sanna

© Ahmad El-B

IJ

12

Spring 201

C-IN. Lec#7

Flooding Routing Strategy

- packet sent by node to every neighbor
- eventually multiple copies arrive at destination
- no network information required
- each packet is uniquely numbered so duplicates can be discarded
- need to limit incessant retransmission of packets
 - nodes can remember identity of packets retransmitted
 - can include a hop count in packets

Properties of Flooding

- All possible routes are tried
 - Highly robust overcome failed links
 - Can broadcast messages
- At least one packet took minimum hop route
 - Can be used to establish routes or virtual circuits
- All nodes reachable are visited (in hop count)
 - Can be used to send routing information
- High traffic load big disadvantage

C-IN. Lec#7

Adaptive Routing

- used by almost all packet switching networks
- routing decisions change as conditions on the network change due to failure or congestion
- requires information about network
- Disadvantages:
 - decisions more complex
 - Tradeoff
 - quality of network information vs overhead to exchange it
 - reacting too quickly can cause oscillation (from congestion)
 - reacting too slowly means information may be irrelevant

Spring 201

Adaptive Routing Advantages

- Improved network performance
 - User view
- Aid in congestion control
 - Balance loads
 - Delay onset of severe congestion
- Benefits depend on
 - Soundness /validity of design
 - Nature of network load

, Spring 201

JC-IN, Lec#7

Adaptive Routing Classes

- Classification based on source of information
 - Local (isolated)
 - Route to outgoing link with shortest queue
 - Can include bias for each destination
 - Rarely used does not use readily available information
 - Adjacent nodes
 - Use delay and outage information from adjacent nodes
 - Can be distributed or centralized
 - All nodes
 - Similar to adjacent usually centralized

JC-IN, Lec#7, Spring 2015

- For more details, refer to:
 - Chapters 12, W. Stallings, Data and Computer Communications, 8th ed.
- The lecture is available online at:
- Lecture notes are found at:
 - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12133</u>
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>